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Today’s Training Observability
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Debugging At Runtime, At Scale
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Tracing Collective
Communications

CCL observability was
missing!

Schedulers & Platforms
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Why CCL Observability

* CCLs are complex system software

* Connect training framework and networking hardware
* Involves control and data dependency with parallelisms

* Opportunity: construct a global state machine to represent such
dependency



Intra-node Dependency

Kernel

tail

head

1. Write data to send buff,
update tail

Send buff

2. Proxy keep
polling new data

—
 ————

6. Poll CQE, update head

FIFO

Proxy

— 3. Read slot
- o

|

5. Update head

e
4—5
po]




Inter-node Dependency
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Tracing CCL Dependency
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* Lightweight, always-on runtime detection and root cause analysis

* Low overhead
* Lightweight instrumentation
* Trigger mechanism
* Root cause analysis
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Mycroft

/" * Instrumentation
e Capture critical path of async coordination
 Completion log and real-time state log

* Almost zero overhead to hosting CCL
 Cheap memory management
* Controlled trace data volume

o |P e Timestamp e Stuck_time

e Comm_id e Op_name e Total_chunks

e GPU id e Op_seq e GPU_ready

e NIC id e RDMA_transmitted

e RDMA _done



Mycroft

/" ¢ Instrumentation

@) « Trigger Mechanism
* Observation: reliability issues rapidly cascade to all nodes
* Sample a subset of nodes is efficient enough
e Faster than other existing (e.g. timeout) mechanisms



/" ¢ Instrumentation

@) « Trigger Mechanism

I7 .
s * Debugging
 Check collective communication rule violation
e Zoom in root cause layers & system components

Level Problem Rule

Chunk-level Failure Each rank should transmit the
same amount of data.

Chunk-level Performance Each component should finish
within expected execution time.

Chunk-level Performance Each component should not
block the downstream ones.

Flow-level  Failure Each flow should complete.

Flow-level Performance Each flow should take similar ex-
ecution time.

Flow-level Performance Each flow should start and end at

similar time.

Mycroft

State Condition Local cause Remote cause
Not started @©=@2=3=0 Uninitialized Blocked

Not transmitted T=@ RDMA issue Receiver not ready
Not delivered 2=3 RDMA issue Receiver failed
GPUnot ready @©=@=3->0 GPU issue -




Debugging Example
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Evaluation

* Deployed in ByteDance’s production environment
* No observable overhead on MFU

* Detection capability
* Performance & overhead
* Production performance



Capability

* Fault injection experiments
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Overhead

* Almost zero overhead compared to barebone NCCL
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Production Performance

e Detect 90% problems in 15 seconds
* Reveal 60% root cause in 20 seconds
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More in the paper

* Tracing data pipeline

e Case studies

* Discussions

* Integration with other debugging tools



Conclusion

* CCL observability was missing

* Opportunities
* Consider CCL as a system software
* Reveal dependencies to track control & data dependency

* Mycroft: Tracing CCL dependencies for reliability

e Capture real-world bugs in real time
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