Mycroft: Tracing Dependencies in Collective
Communication Towards Reliable LLM Training

Yangtao Deng*, Lei Zhang*, Qinlong Wang, Xiaoyun Zhi, Xinlei Zhang, Zhuo Jiang,
Haohan Xu, Lei Wang, Zuquan Song, Gaohong Liu, Yang Bai, Shuguang Wang,
Wencong Xiao, Jianxi Ye, Minlan Yu, Hong Xu

hiil ByteDance

r
€.
e The Chinese University of Hong Kong

hiil ByteDance | Seed

Today’s Training Observability

Fine
Kernel-level
| CUDA trace Networking
Granularity stats/counters
RDMA-level
PyTorch API calls
Coarse Op-level

High Low
Overhead

Debugging At Runtime, At Scale

'Gray Failures

Fine
Kernel-level 'Performance Issues
| CUDA trace Networking
Granularity stats/counters
RDMA-level
PyTorch API calls
Coarse Op-level

High Low
Overhead

Tracing Collective
Communications

CCL observability was
missing!

Schedulers & Platforms

Kubernetes

YARN Slurm

HPC Job Manager

- Accept user jobs, allocate nodes/GPUs, and set environment variables

¥ srun--nodes=2 --gres=gpu:8 ...
Multi-Process Launcher
torchrun mpirun horovodrun

- Launch parallel processes on nodes, inject environment variables

¥

torchrun --nnodes=S8 ... train.py

Deep Learning Framework

Megatron-LM

DeepSpeed

PyTorch

- Autograd engine, distributed strategies, calls C++ back-end

\ g

aten::mm, ncclAllReduce, ...

Compute Libs

cuBLAS

cuDNN

Comm Libs

- CUDA runtime/driver

NCCL RCCL

. cublasGemmEx

- Collective communications

. 2 ibverbs

Hardware Layer

GPU

CPU

Network

Switch

- InfiniBand/RoCE/Ethernet, NVLink/PCle, GDR, ...

Why CCL Observability

* CCLs are complex system software

* Connect training framework and networking hardware
* Involves control and data dependency with parallelisms

* Opportunity: construct a global state machine to represent such
dependency

Intra-node Dependency

Kernel

tail

head

1. Write data to send buff,
update tail

Send buff

2. Proxy keep
polling new data

—
 ————

6. Poll CQE, update head

FIFO

Proxy

— 3. Read slot
- o

|

5. Update head

e
4—5
po]

Inter-node Dependency

ot
Stf.'[.'}l] I ran [
rank 1 |l BB
rank 2
dept CEA-—’EﬁiD k3
rank] I B
k2
e —n=8_J"5 o
rank 0
nk 2 |
o (- D !
rnkl H B E B B B B EE Bm
rank 2 A B B B B m = b

rank 0 rank 1l rank2 rank3 rank O |
rank 3 [
rank 0 R
[0 I I —
k] I B B BB
[
rank 0
rank 3 EH B B 0 B B B 0

Tracing CCL Dependency

* Multiple levels R B rTrrrass
GPUOD |) il
e Chunk level I | E— @ ®m @
* Flow level GPU 1 :-----------: e @ = mem
| | ——) Il I
L e mmmme— = | s @ B B
. . :----------'-' I | B N Bl .
* Fine-grained state GPUZ _-— e
: e
machine 000 hemeeeao- i B BN GEEN N
e e
GPU3 | o S
L e mmmmeo = | e S = B
* Control & data Op-level/Kemel-level Flow-level Chunk-level

dependency

* Lightweight, always-on runtime detection and root cause analysis

* Low overhead
* Lightweight instrumentation
* Trigger mechanism
* Root cause analysis

Mycroft

MNCCL
Process

MNCCL
Proscess

MNCCL
Process

.mtf:Ingl;}
comp log()

User/
developers |

Further
investigations |,
(e.g., hardware, ||
software, ..}

Mycroft

/" * Instrumentation
e Capture critical path of async coordination
 Completion log and real-time state log

* Almost zero overhead to hosting CCL
 Cheap memory management
* Controlled trace data volume

o |P e Timestamp e Stuck_time

e Comm_id e Op_name e Total_chunks

e GPU id e Op_seq e GPU_ready

e NIC id e RDMA_transmitted

e RDMA _done

Mycroft

/" ¢ Instrumentation

@) « Trigger Mechanism
* Observation: reliability issues rapidly cascade to all nodes
* Sample a subset of nodes is efficient enough
e Faster than other existing (e.g. timeout) mechanisms

/" ¢ Instrumentation

@) « Trigger Mechanism

I7 .
s * Debugging
 Check collective communication rule violation
e Zoom in root cause layers & system components

Level Problem Rule

Chunk-level Failure Each rank should transmit the
same amount of data.

Chunk-level Performance Each component should finish
within expected execution time.

Chunk-level Performance Each component should not
block the downstream ones.

Flow-level Failure Each flow should complete.

Flow-level Performance Each flow should take similar ex-
ecution time.

Flow-level Performance Each flow should start and end at

similar time.

Mycroft

State Condition Local cause Remote cause
Not started @©=@2=3=0 Uninitialized Blocked

Not transmitted T=@ RDMA issue Receiver not ready
Not delivered 2=3 RDMA issue Receiver failed
GPUnot ready @©=@=3->0 GPU issue -

Debugging Example

GPU 1to 2 %_I I I I\ %% ... == Inter-node dependency

[0 Send chunk

\
GPU2to0 4 | |:| |:| ‘ ‘ ‘ ‘ B ReduceScatter chunk

Other normal ops

cru2w3 7 N B -0 W 7/ Degradingstarts

Time (ms)

Evaluation

* Deployed in ByteDance’s production environment
* No observable overhead on MFU

* Detection capability
* Performance & overhead
* Production performance

Capability

* Fault injection experiments

100

100

- 1
= :
= &0 80| b
= % 60 60 |
=] H
£ %0 :g :g i
3 - 5
o 85 , 0 L n "]
E‘ 380 400 420 440 180 230 280 330 12000 22000 0 200 400 1300 1350 1400
S Time (ms) Time (ms) Time (ms)

(a) NIC shutdown. Root cause: first to (b) NIC bandwidth limit. Root cause: (c) PCle downgrading. Root cause: later

stop log generation. earlier slowdown. com pletion.
< 100 100 - 100) 100
2 ’ T = !
= % = 80 | | 718 80 /f_ 80 |
¥§ 60 60 | | 60 ﬁ‘d 60 |
< 40 40 - 40 40 |
5 20 20 ' 20 ¥ 20 |
3 0 0 0 - f 0
EL 300 500 TO0 900] 200 400 600 0 200 400 &0] 00 600 SO0 1200
S Time (ms) Time (ms) Time (ms) Tirme (ms)

(d) GPU power limit. Root (¢) Background computation. (f) Background traffic. Fossible (g) NCCL delay. Root cause:
cause: later completion. Root canse: later completion. candidates: later completions. later start.

— Abnormal [machine #1, rank(s) #n] —— Affected [machines #3-4, rank(s) #n] —— Other rank(s) of machines #3-4 Injection

—— Affected [machine #2, rank(s) #n]

— Other rank(zs) of machines #1-2

t Anomaly/candidates

Overhead

* Almost zero overhead compared to barebone NCCL

—_ 2000 : (D ReduceScatter of Abnormal GPU @ ReduceScatter of Affected GPUs | Injection

2] 1800 e @ AllGather of Abnormal GPU @ AllGather of Affected GPUs

é % . . 5ls 22s : Et’:ﬂ.‘: 1208 180s

0 1140 . . OB] B | - o T

g . o @ ® . — o

= 1130 off - - e e

g @) @ s nociKemel ATIG..

'E 1120 * O = mrmmm | Nomore - [

~ 1100 : : _ _ — % |]
Baseline MyCI'th NVRx NSlght with NSlght with (a) NIC shutdown. Root cause: (b) NIC bandwidth limit.

CUDA trace backtrace first to stop log generation. Root cause: earlier slowdown.

Production Performance

e Detect 90% problems in 15 seconds
* Reveal 60% root cause in 20 seconds

1.0 1.0 20 60
O O
. . =, YT E—
005 005 o o D
O O g 10 =]
~ = 20 q] L
Y] — 0.0 | opt L L 1 | | 1 = -
0 10 20 30 0 30 60 512 1k 2k 4k 8k 512 1k 2k 4k 8k

Time(s) Time(s) GPU num GPU num

More in the paper

* Tracing data pipeline

e Case studies

* Discussions

* Integration with other debugging tools

Conclusion

* CCL observability was missing

* Opportunities
* Consider CCL as a system software
* Reveal dependencies to track control & data dependency

* Mycroft: Tracing CCL dependencies for reliability

e Capture real-world bugs in real time

Thank you

	Slide 1: Mycroft: Tracing Dependencies in Collective Communication Towards Reliable LLM Training
	Slide 2: Today’s Training Observability
	Slide 3: Debugging At Runtime, At Scale
	Slide 4: Tracing Collective Communications
	Slide 5: Why CCL Observability
	Slide 6: Intra-node Dependency
	Slide 7: Inter-node Dependency
	Slide 8: Tracing CCL Dependency
	Slide 9: Mycroft
	Slide 10: Mycroft
	Slide 11: Mycroft
	Slide 12: Mycroft
	Slide 13: Debugging Example
	Slide 14: Evaluation
	Slide 15: Capability
	Slide 16: Overhead
	Slide 17: Production Performance
	Slide 18: More in the paper
	Slide 19: Conclusion
	Slide 20: Thank you

