
Mycroft: Tracing Dependencies in Collective
Communication Towards Reliable LLM Training

Yangtao Deng*, Lei Zhang*, Qinlong Wang, Xiaoyun Zhi, Xinlei Zhang, Zhuo Jiang,
Haohan Xu, Lei Wang, Zuquan Song, Gaohong Liu, Yang Bai, Shuguang Wang,

Wencong Xiao, Jianxi Ye, Minlan Yu, Hong Xu

Today’s Training Observability

Op-level

Kernel-level

RDMA-level
PyTorch API calls

CUDA trace Networking
stats/countersGranularity

Overhead

Fine

Coarse

LowHigh

Debugging At Runtime, At Scale

Op-level

Kernel-level

RDMA-level
PyTorch API calls

CUDA trace Networking
stats/countersGranularity

Overhead

Fine

Coarse

LowHigh

Gray Failures

Performance Issues

Tracing Collective
Communications

CCL observability was
missing!

- Accept user jobs, allocate nodes/GPUs, and set environment variables

Kubernetes

Schedulers & Platforms

YARN Slurm HPC Job Manager

srun --nodes=2 --gres=gpu:8 ...

- Launch parallel processes on nodes, inject environment variables

Multi-Process Launcher

torchrun --nnodes=8 ... train.py

- Autograd engine, distributed strategies, calls C++ back-end

Megatron-LM

Deep Learning Framework

aten::mm, ncclAllReduce, ...

DeepSpeed PyTorch

torchrun mpirun horovodrun

- CUDA runtime/driver

cuBLAS

Compute Libs

cuDNN

ibverbs

- Collective communications

NCCL

Comm Libs

RCCL

cublasGemmEx

- InfiniBand/RoCE/Ethernet, NVLink/PCIe, GDR, ...

GPU

Hardware Layer

CPU Network Switch

Why CCL Observability

• CCLs are complex system software
• Connect training framework and networking hardware

• Involves control and data dependency with parallelisms

• Opportunity: construct a global state machine to represent such
dependency

Intra-node Dependency

Send buff Send queue

Kernel Proxy

1. Write data to send buff,
update tail

head

tail

2. Proxy keep
polling new data

3. Read slot
address

4. WR
5. Update head

6. Poll CQE, update head

FIFO

Inter-node Dependency

Tracing CCL Dependency

• Multiple levels
• Chunk level

• Flow level

• Fine-grained state
machine

• Control & data
dependency

Mycroft

• Lightweight, always-on runtime detection and root cause analysis

• Low overhead
• Lightweight instrumentation

• Trigger mechanism

• Root cause analysis

Mycroft

• Instrumentation
• Capture critical path of async coordination

• Completion log and real-time state log

• Almost zero overhead to hosting CCL
• Cheap memory management

• Controlled trace data volume

Metadata

• IP

• Comm_id

• GPU_id

• NIC_id

Operation

• Timestamp

• Op_name

• Op_seq

Chunk

• Stuck_time

• Total_chunks

• GPU_ready

• RDMA_transmitted

• RDMA_done

Mycroft

• Instrumentation

• Trigger Mechanism
• Observation: reliability issues rapidly cascade to all nodes

• Sample a subset of nodes is efficient enough

• Faster than other existing (e.g. timeout) mechanisms

Mycroft

• Instrumentation

• Trigger Mechanism

• Debugging
• Check collective communication rule violation

• Zoom in root cause layers & system components

Debugging Example

Evaluation

• Deployed in ByteDance’s production environment
• No observable overhead on MFU

• Detection capability

• Performance & overhead

• Production performance

Capability

• Fault injection experiments

Overhead

• Almost zero overhead compared to barebone NCCL

Production Performance

• Detect 90% problems in 15 seconds

• Reveal 60% root cause in 20 seconds

More in the paper

• Tracing data pipeline

• Case studies

• Discussions

• Integration with other debugging tools

Conclusion

• CCL observability was missing

• Opportunities
• Consider CCL as a system software

• Reveal dependencies to track control & data dependency

• Mycroft: Tracing CCL dependencies for reliability

• Capture real-world bugs in real time

Thank you

	Slide 1: Mycroft: Tracing Dependencies in Collective Communication Towards Reliable LLM Training
	Slide 2: Today’s Training Observability
	Slide 3: Debugging At Runtime, At Scale
	Slide 4: Tracing Collective Communications
	Slide 5: Why CCL Observability
	Slide 6: Intra-node Dependency
	Slide 7: Inter-node Dependency
	Slide 8: Tracing CCL Dependency
	Slide 9: Mycroft
	Slide 10: Mycroft
	Slide 11: Mycroft
	Slide 12: Mycroft
	Slide 13: Debugging Example
	Slide 14: Evaluation
	Slide 15: Capability
	Slide 16: Overhead
	Slide 17: Production Performance
	Slide 18: More in the paper
	Slide 19: Conclusion
	Slide 20: Thank you

