
Systematic Data Placement Optimization in
Multi-Cloud Storage for Complex Requirements

Maomeng Su, Lei Zhang, Yongwei Wu,Member, IEEE, Kang Chen, and Keqin Li, Fellow, IEEE

Abstract—Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage

providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these

works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to

optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement

should satisfy system or application developers’ requirements. As developers often demand various objectives to be optimized

simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a

systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the

problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex

requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in

optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple

cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared

with the model in mLibCloud. For complex requirements, Triones can improve fault-tolerance level by 2� and reduce access latency

and vendor lock-in level by 30�70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the

model only optimizing cost in Scalia.

Index Terms—Systematic model, data placement optimization, multi-cloud storage, complex requirements

Ç

1 INTRODUCTION

CLOUD storage can provide virtually unlimited storage
capacity for its users. It has been a trend that large num-

bers of organizations, companies, government departments,
etc., are storing their data into cloud [1]. However, only using
one cloud storage provider is more likely to suffer from sin-
gle-point failures and vendor lock-in [2], [3]. As a result, the
multi-cloud storage that relies onmultiple cloud storage pro-
viders to place data at some redundance level has been used
by current works [2], [3], [4], [5], [6], [7]. It can provide better
service quality including vendor lock-in avoiding as well as
fault-tolerance improving. These features are extremely ben-
eficial to systems or applications such as data backup, docu-
ment archiving, or electronic health recording, which need
to keep a large amount of data.

In such cases, erasure coding [8], [9], [10] is usually
applied for further improvement as it can significantly
reduce the cost of data storage compared to full replication
[11], [12], [13]. The total amount of data that must be

transferred over the network can also be reduced. With era-
sure coding, each data object is evenly divided into k blocks
and then these blocks are used to generate n� k encoded
data blocks (n blocks in total, n > k). This is called as
parameter ðn; kÞ of erasure coding. These n data blocks will
be uploaded into n cloud storage providers, with each pro-
vider holding just one data block respectively. Any k blocks
from the n ones can be used to reconstruct the original data
object. We can see that erasure coding can naturally fit into
the multi-cloud storage.

However, many previous works [2], [4], [5], [6] only
used the erasure-coding based multi-cloud storage to
achieve certain features. Few of them considered the opti-
mization issue under this circumstance. For example, both
DepSky [5] and mLibCloud [6] have achieved low access
latency, but they did not give a solution to achieve optimal
access performance from the multi-cloud storage to a spe-
cific location. Scalia [7] has done the optimization work on
the cost. However, it only conducted single objective opti-
mization, which is far from enough for the multi-cloud
storage. Multi-objective optimization [14], [15] such as opti-
mizing cost, access latency, and fault-tolerance at the same
time has been left unaddressed.

In fact, the most important part of optimizing the multi-
cloud storage1 is the optimization on data placement, which
is to choose an optimized data placement configuration. A
data placement configuration in the multi-cloud storage con-
sists of erasure coding parameter ðn; kÞ and n cloud storage
providers.

� M. Su, L. Zhang, Y. Wu, and K. Chen are with the Department of Computer
Science and Technology, Tsinghua National Laboratory for Information Sci-
ence and Technology (TNLIST), Tsinghua University, Beijing 100084,
China, the Research Institute of TsinghuaUniversity in Shenzhen, Shenzhen
518057, China, and the Technology Innovation Center at Yinzhou, Yangtze
Delta Region Institute of Tsinghua University, Ningbo 315000, Zhejiang,
China. E-mail: {smm11, lei-zhang11}@mails.tsinghua.edu.cn, {wuyw,
chenkang}@tsinghua.edu.cn.

� K. Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 27 Nov. 2014; revised 24 June 2015; accepted 12 July
2015. Date of publication 29 July 2015; date of current version 16 May 2016.
Recommended for acceptance by G. Min.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2462821

1. In the rest of this paper, multi-cloud storage is used to represent
the storage which consists of multiple cloud storage providers and
stores data stripped by using erasure coding.

1964 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 6, JUNE 2016

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

It is non-trivial to achieve data placement optimiza-
tion in general in the multi-cloud storage. Data place-
ment configurations with diverse cloud storage
providers and different ðn; kÞ parameters offer totally dif-
ferent serving ability (e.g., cost, access latency, or vendor
lock-in). Moreover, it further complicates the optimiza-
tion that developers do have different optimization
requirements, according to the properties of their sys-
tems or applications. Here, we use simple requirement to
represent single objective optimization, i.e., optimizing
only one factor. Complex requirement is used to represent
the situation of optimizing multiple factors at the same
time. For instance, some developers who want to store
critical data in the multi-cloud storage would be inter-
ested in optimizing factors including cost, fault-tolerance
level (FTL), and vendor lock-in level simultaneously.
Other developers might care more about those factors of
cost, access latency, as well as availability for data that
are accessed frequently. Moreover, as an additional
demand for the optimization model of the multi-cloud
storage, it must be general enough to incorporate new
factors and new requirements that might be raised in the
future. This is meaningful as the cloud storage technol-
ogy is still under rapid development. Ad-hoc ways of
randomly choosing data placement configurations used
in previous works can hardly fulfill the optimization to
satisfy complex requirements. Furthermore, it is impossi-
ble for developers to deal with such complicated data
placement optimization issue themselves.

In this paper, we present Triones, a systematic model
to formulate data placement in the multi-cloud storage as
well as the ways of its optimization. Triones applies non-
linear programming [16], [17] to define the problem of
data placement optimization under complex require-
ments. In the non-linear programming, Triones regards
all the factors associated with the multi-cloud storage as
derived variables from basic variables and constants.
Basic variables are used as representation of the final
optimized results (configurations) for data placement.
They consist of a set of 1 or 0 to represent whether a cor-
responding provider is used or not with an additional
variable k, representing the parameter of erasure coding.
Besides, constants stand for the characteristics of underly-
ing cloud storage providers.

The objective function of the non-linear programming is
a combination of factors to be optimized. They map to a
complex requirement demanded by system or application
developers. Moreover, inequalities in the non-linear
programming are used to represent constraints on factors.
The left-hand side of each constraint inequality represents
one factor under constraint while the right-hand side of it is
the quantifiable constraint on this factor.

We use euclidean distance measure in an abstract geo-
metric space [18], [19] to balance among different kinds of
factors to get the optimized results for the objective func-
tion. The results correspond to the optimized data place-
ment configurations that satisfy developers’ complex
requirements subject to certain constraints. In addition, Tri-
ones can also address data placement optimization under
simple requirements, in which cases the objective function
contains only one factor.

In this paper, we have made the following contributions:

1) We analyze data placement optimization in the
multi-cloud storage and point out several aspects that
complicate the process to choose optimized data
placement configurations. One is that complex
requirements are much common for developers who
intend to deploy their systems or applications in the
multi-cloud storage. The other is that new factors will
be under consideration in the future. We think these
issues on optimization should be considered system-
atically instead of in ad-hoc ways. This motivates a
systematic approach to rethinking the data placement
optimization problem in themulti-cloud storage.

2) We propose a systematic model called Triones. It
uses non-linear programming to formulate and opti-
mize data placement in the multi-cloud storage
under complex requirements. We apply the euclid-
ean distance measure through geometric space
abstraction to construct the objective function, which
helps get the final optimized data placement config-
urations. In this way, single objective as well as
multi-objective optimization can be well addressed
in Triones. Moreover, this model is general enough
to adopt new factors and new requirements.

3) We have designed and implemented Triones.
Experiments using Triones and the workloads col-
lected from a file sharing application show that, com-
pared to models in previous works, Triones is able to
effectively satisfy both simple and complex require-
ments for the multi-cloud storage.

The remainder of this paper is organized as follows. In
Section 2, we outline the background and motivation for
Triones. Section 3 presents the systematic model in detail.
The optimization method used in Triones is discussed in
Section 4. In Section 5, we describe the design and imple-
mentation of Triones. We give the evaluation in Section 6 to
show the effectiveness of Triones in satisfying different
requirements on optimization. Related works are discussed
in Section 7 and we conclude our paper in Section 8.

2 BACKGROUND

2.1 Single Cloud Storage versus Multi-Cloud
Storage

Single cloud storage relies on only one individual cloud
storage provider. It is easy for developers to build their sys-
tems or applications over single cloud storage. What they
need to do is only to use the APIs offered by the underlying
cloud storage provider. This provider guarantees its service
quality through its SLAs [20]. However, such SLAs will
always be easily broken under the circumstance of using
only one cloud storage provider. It is due to the fact that
one provider cannot prevent transient failures that affect
the service availability and permanent failures that cause
permanent data loss from occurring [2], [3], [5]. For exam-
ple, as reported on June 29, 2012, an outage caused by
power issues made Amazon’s services unavailable, which
took down numerous companies such as Netflix and Pinter-
est [21]. Even worse, the accidents ever happened in Micro-
soft and Amazon resulted in permanent loss or corruption

SU ET AL.: SYSTEMATIC DATA PLACEMENT OPTIMIZATION IN MULTI-CLOUD STORAGE FOR COMPLEX REQUIREMENTS 1965

of users’ data [3], [6]. Moreover, one has to face the issue of
vendor lock-in in single cloud storage, that is, if he/she puts
all data into one cloud storage provider, he/she is totally
limited by this provider and it will be much expensive to
switch from the provider to another [2].

To avoid the disadvantages of single cloud storage, most
works [2], [4], [5], [6] have used multi-cloud storage to
deploy the systems or applications. They stripe data into
multiple cloud storage providers distributed in different
geographical locations. This helps guarantee better fault tol-
erance, higher service availability as well as data durability,
and avoiding vendor lock-in. In such cases, erasure coding
is introduced to significantly reduce the amount of data to
be stored compared to full replication [11], [12], [13], but
with an overhead on read latency [6]. However, system or
application developers can accept such overhead to achieve
a lower cost for keeping a large amount of data. Such a sce-
nario is common for a wide range of systems or applications
providing services like data back-up, document archiving,
or electronic health recording [2], [5], [6]. As a result, multi-
cloud storage that is based on erasure coding is well suited
to these types of systems or applications.

2.2 Optimization for Data Placement in the
Multi-Cloud Storage

Many previous works used the multi-cloud storage just in
ad-hocways to provide certain features. They only randomly
chose the underlying cloud storage providers and parameter
ðn; kÞ for their systems or applications. They did not further
explore how far the optimization can be achieved in the
multi-cloud storage by effectively choosing data placement
configurations. A data placement configuration for the
multi-cloud storage consists of n cloud storage providers
and parameter ðn; kÞ of erasure coding. Optimization is
essential in this case as data placement configurations with
different cloud storage providers and parameters ðn; kÞ offer
totally different serving ability. Although Scalia [7] did adopt
an adaptive scheme to choose data placement configurations
at optimal cost, it only conducted single objective optimiza-
tion and lacked a solution formulti-objective optimization.

Moreover, depending on the properties of the systems or
applications, developers will hold various optimization
requirements that are either simple or complex. Even within
the same system or application, developers will have differ-
ent requirements on data objects with diverse access pat-
terns. Consequently, it is difficult for developers to cope
with the data placement optimization issue themselves
when deploying their systems or applications over the
multi-cloud storage. A model that can formulate data place-
ment optimization in a systematic way to address the issue
is needed under this circumstance.

3 TRIONES—THE SYSTEMATIC MODEL

3.1 Formulation of Triones

The scenarios of how developers would deploy their sys-
tems or applications in the multi-cloud storage are shown
in Fig. 1. The underlying cloud storage providers are
located in different regions in the world. These providers
only provide storage services and do not support running
any program. Developers can use the multi-cloud storage

in two modes. One is to build standalone services in inde-
pendent datacenters to serve their users, but keep data in
the multi-cloud storage. The other is to build service func-
tions into end-user applications directly. Triones aims to
target both scenarios.

Linear Programming is limited to supporting different
developer-required factors that may have complex defini-
tions. We use non-linear programming [16], [17] for gener-
ally coping with data placement optimization. A lot of
information should be taken into consideration while build-
ing the inequalities of constraints as well as the objective
function of the non-linear programming. Each constraint
inequality formula represents a constraint on one factor.
The objective function is made up of factors that need to be
optimized. The factor under consideration is built on top of
basic variables and constants in Triones.

Basic variables are used to represent the results of optimi-
zation. They contain the information of cloud storage pro-
viders that are used for placing data. They also contain the
information of erasure coding parameters. Thus, we can use
a variable set,X, to denote these variables.X takes the form:

X ¼ fx1; x2; . . . ; xN; kg: (1)

N is the total number of cloud storage providers. Each xi

(1 � i � N) equals to 1 or 0 that means the provider does
appear or not in the final data placement configuration. The
variable k is the parameter of erasure coding. As the sum of
xi is the value of another erasure coding parameter n, n is
not in the final result. All xi (i ¼ 1; 2; . . . ; N) and k are the
variables in the non-linear programming. A specific result
of X, denoted as Xs (s ¼ 1; 2; . . . ; S), is a data placement
configuration. S indicates the total number of data place-
ment configurations that can be generated from N cloud
storage providers by using erasure coding. For example,
assume there are four cloud storage providers, then one
configuration may be f1; 1; 1; 1; kð3Þg while another configu-
ration may be f1; 1; 0; 1; kð2Þg. Such configurations could be
used to place data for upper-level systems or applications.

The characteristics of underlying cloud storage providers
can be regarded as coefficients for the non-linear program-
ming. They are constants that are either provided by cloud
storage providers completely through their SLAs on web-
sites (e.g., guaranteed durability or pricing strategy) or col-
lected by using test programs (e.g., access latency). These

Fig. 1. The overview of how developers would build their systems or
applications in the multi-cloud storage.

1966 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 6, JUNE 2016

characteristics are the base to decide whether a data place-
ment configuration can satisfy developers’ requirements or
not. Therefore, each cloud provider i can map to a character-

istic vector denoted as Pi
!
, and Pi

!¼ ðCi;1; Ci;2; . . . ; Ci;KÞ. In
Pi
!
, each component reflects one characteristic for the ith

cloud storage provider, with total K characteristics under

consideration. Thus, we can further have P ¼ ½ P1
�!

;

P2
�!

; . . . ; PN
�!�T. P is the characteristic matrix of all providers.

It can be used as the constant coefficient matrix for con-
straint inequalities as well as the objective function of the
non-linear programming.

Thus, the general form of the data placement optimiza-
tion problem for multi-cloud storage systems can be
expressed as follows:

Minimize : f1ðX;P Þ
: f2ðX;P Þ
: � � �

Subject to : f
0
1ðX;P Þ < Con1

: f
0
2ðX;P Þ < Con2

: � � �

8>>>>>><
>>>>>>:

(2)

In Equation (2), fe (e ¼ 1; 2; . . .) means a factor to be opti-

mized in the objective function while f
0
e (e ¼ 1; 2; . . .) means

a factor at the left-hand side of a constraint inequality.

feðX;P Þ and f
0
eðX;P Þ indicate that all these factors are

defined from the variable set X and constant coefficient
matrix P . Cone is the quantifiable constraint on fe in con-
straint inequalities. Notice that the factors in the constraint
inequalities can also appear in the objective function of the
non-linear programming. This is quite possible that, for
example, developers might want a constraint on vendor
lock-in level while still expecting to choose a result with the
lowest vendor lock-in level. So far we have not defined
the objective function. We will defer this until discussing
the optimization. Developers can put multiple factors in the
objective function to represent a complex requirement. The
specific value of X that could minimize the objective func-
tion is the data placement configuration that satisfies devel-
opersa�complex requirements subject to constraints.

3.2 An Instance of Triones

For clarification, we consider five factors in Triones: vendor
lock-in level, fault-tolerance level, access latency, cost, and
availability. All these factors have been proved important
for upper-level systems or applications by previous studies
[2], [4], [5], [6], [7].

Vendor lock-in level. Vendor lock-in level is relevant with
the number of cloud storage providers2 (n, i.e., sum of xi) in
a data placement configuration. A larger nmeans a less pos-
sibility that the data of upper-level systems or applications
are limited by one or some particular providers. Hence,
according to work [2], [7], we could use the reciprocal of n
to reflect vendor lock-in level in different configurations.
That is, the vendor lock-in level can be formalized from the
variables. The value of it is in range 0; 1ð �. Denote the vendor
lock-in level as V , then it can be expressed as V ¼ 1=n.

Fault-tolerance level. One of the most important benefits to
place data in the multi-cloud storage is to tolerate transient
or permanent failures of certain number of providers. We
define fault-tolerance level, denoted as F , as F ¼ n� k.
Fault tolerance level is used to quantify the ability of a data
placement configuration to tolerate failures. It is defined
from variable set X. With erasure coding, a data placement
configuration could tolerate n� k cloud storage providers
failing at the same time. Hence, the configuration with a
higher value of F can offer better availability and durability.

Availability. Only defining fault-tolerance level is not
enough to reflect the actual reliability provided by a data
placement configuration. For example, both parameters
with ðn; kÞ ¼ ð3; 2Þ and ðn; kÞ ¼ ð10; 9Þ have the same fault-
tolerance level, but the latter is less reliable because it is
more likely to suffer from provider failures. Thus, we have
to further define the availability and durability. The overall
availability of a data placement configuration, denoted as
A, can be defined as:

A ¼ 1�
Xn

m¼n�kþ1

Xn
mð Þ

j¼1

Y
i2Nj

ð1� aiÞ
Y
i
0 2N0

j

ai0 : (3)

Overall availability is based on the variable set X as well
as constant coefficient matrix P (actually the availability col-
umn in the matrix). In Equation (3), Nj indicates a set of m

providers that are unavailable while N
0
j is a set of n�m pro-

viders that still work normally. The ai (ai0) is the availability

that provider i (i
0
) guarantees through its SLA, a constant

appearing in P . The overall availability of a configuration is
equal to the probability that no more than n� k providers
crash at the same time. This depends on the fact that events
of going to crash are independent among these cloud
storage providers [22], as one has no influence on others’
service. The analysis of data durability is the same as
availability, so we skip it for page limitation.

Cost. Cost is the factor that can also be derived from the
variable vector X and constant coefficient matrix P . In the
multi-cloud storage, the cost can be defined as:

C ¼P5
j¼1

PT
i¼1

R
xi � Y1 þ Y2ð Þdt

Y1 ¼
PGi;j�1

g¼0 Di;j;g � Ui;j;gðtÞ
� �

Y2 ¼ Y3 �
PGi;j�1

g¼0 Di;j;g

� �
� Ui;j;Gi;j

ðtÞ
Y3 ¼ Mj �RjðtÞ þR

0
i;j

� �
M
�! ¼ 1

k ;
1
n ;

1
k ;

k
n ; 1

� �
:

8>>>>>>>><
>>>>>>>>:

(4)

C represents the cost to keep data objects in a data place-
ment configuration. The RjðtÞ’s (j ¼ 1; 2; . . . ; 5) are the
resources consumed at time t: R1ðtÞ is for the amount of
storage, R2ðtÞ is for the amount of transfer-out, R3ðtÞ is for
the amount of transfer-in, R4ðtÞ is for the number of GET
(Read) requests, and R5ðtÞ is for the number of PUT (Write)
requests. As one data object is divided into equal-sized
blocks to be uploaded into the providers of a configuration,
the real resources consumed on the data object is impacted

by this configuration. M
�!

denotes the vector of impact
parameters of a data placement configuration on cost. The
Mj’s (j ¼ 1; 2; . . . ; 5) are for storage, transfer out, transfer in,

2. Assume the providers work independently which means one will
not influence others.

SU ET AL.: SYSTEMATIC DATA PLACEMENT OPTIMIZATION IN MULTI-CLOUD STORAGE FOR COMPLEX REQUIREMENTS 1967

GET requests, and PUT requests. Moreover, the R
0
i;j’s are

sources that have been used in provider i.
Several cloud storage providers set ladders for charging.

The price changes at different ladders. We take such pricing
strategy into consideration for calculating cost. Ui;j;gðtÞ rep-
resents the price of provider i for data storage (j ¼ 1), data
transfer-out (j ¼ 2), data transfer-in (j ¼ 3), GET requests
(j ¼ 4), and PUT requests (j ¼ 5) at ladder g and time t. If a
provider does appear in a data placement configuration, its
pricing strategy will be used for the calculation of cost. Di;j;g

stands for the threshold of ladder g in provider i on j (note
that Di;j;0 ¼ 0). They are all characteristics of the providers
in P . Gi;j is the number of ladders used in provider i on j.

Access latency. The access latency of a data object from site
r to a data placement configuration Xs, LXs;r, can be defined
as follows:

LXs;r ¼
1

k
� max

1�i�N
fxi � li;rg: (5)

In this equation, li;r is the access latency of this data object
from r to cloud storage provider i. It is in the matrix P and
can be gotten by testing. Note that it includes latency of
processing requests in the providers as well as transferring
data through the Internet. Moreover, li;r here refers to the
latency tested under a fixed large size (e.g., 4 MB) instead of
various sizes, the same as LXs;r. This is due to the fact that
performance of accessing large-size data objects is enough
to reflect the network conditions from a specific site r to dif-
ferent cloud storage providers [2], [5], [6], [13]. In Triones,
we use the access latency of 4 MB-size data objects as the cri-
teria to measure a data placement configuration in provid-
ing access performance.

Recall that in data write, n blocks of a data object have to
be uploaded into n providers. While in data read, k pro-
viders of the n ones would be chosen to retrieve k blocks to
reconstruct the original data object. As a result, the defini-
tion of access latency from site r to a data placement config-
uration Xs is based on the following assumption: the
accessing actions can be executed in parallel [5]. As the

amount of each block is 1
k of the original data object, LXs;r

can be roughly estimated as 1
k of the maximum value among

all li;r, if provider i is included in Xs. This definition is rea-
sonable due to the fact that if one provider is quite slow,
then the overall access latency will be increased.

Based on all the definitions, we can have a complex
requirement of optimizing fault-tolerance level, access
latency, and cost simultaneously. These three factors will be
put in the objective function. We can also set three con-
straints on the optimization: a) vendor lock-in level should
be no more than 0.2; b) fault-tolerance level should be no
less than 1; c) guaranteed availability should be no less than
99.999 percent. The factors under constraint compose the
inequality formulas.

4 DATA PLACEMENT OPTIMIZATION

4.1 The General Objective Function

One or more factors can be put in the objective function
reflecting simple requirements or complex requirements.
However, as discussed above, the factors considered have

distinct definitions with each other. They have different
units, differ significantly in the order of magnitude (e.g.,
cost and vendor lock-in level), and reflect independent
aspects of a system. It is not easy to combine them reason-
ably under developers’ complex requirements, not to
mention new and unpredictable factors that may be
raised in the future.

Triones addresses this issue in the way through multi-
dimension geometric space abstraction [18], [19]. In this geo-
metric space, each dimension independently represents one
factor. Based on the definition of these factors, every possible
data placement configuration (i.e., Xs) can be used to calcu-
late a specific value on each factor. Then each configuration
maps to a point in this space, with the components of the
point being the values of factors F ¼ ff1; f2; . . . ; fEg. E is the
total number of factors in the objective function. Configura-
tions whose values of factors violate the constraints do not
map to any point in themulti-dimension geometric space.

As illustrated in Fig. 2, for optimization, Triones sets a
best point in the multi-dimension geometric space. The best
point consists of the best value in each dimension. For exam-
ple, in the dimension of access latency, the best value should
be the lowest access latency to a specific data placement
configuration. Notice that not all the best values are the
smallest ones for corresponding dimensions. The bestmeans
the smallest for cost and vendor lock-in level while it means
the largest for other factors such as availability and fault-tol-
erance level. It is decided by the definitions of the factors
under consideration. Then, each point can get the distance
to the best point by using euclidean distance measure. A
point with a shorter distance to the best point will be consid-
ered as a better point and the corresponding configuration
will be considered as a better schema.

However, the euclidean distance requires the same units
of measurement for each dimension. Thus, we have to cal-
culate the distance by using normalized values instead of
absolute ones. The normalized value of a component in a
point is calculated by its absolute value over maximum
value in the corresponding dimension. The maximum value
of every dimension composes a maximum point, which is
also used for euclidean distance measure. The best point
and the maximum point are usually virtual points that do

Fig. 2. A three-dimension geometric space for optimizing cost, fault-
tolerance level, and vendor lock-in level.

1968 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 6, JUNE 2016

not match any data placement configuration. They are only
meaningful for getting the optimized point (configuration).

With normalized values in all dimensions, Triones pro-
vides a general objective function in the form of euclidean-
distance measure. Assume that there are E factors to be
optimized. Then in a E-dimension geometric space, a
data placement configuration Xs could map to a point
ðf1ðXs; P Þ; . . . ; fEðXs; P ÞÞ. Moreover, the best point could

be labeled as ðfbest
1 ; . . . ; fbest

E Þ and the maximum point could
be labeled as ðfmax

1 ; . . . ; fmax
E Þ. For the best and maximum

points, fbeste (e ¼ 1; . . . ; E) is the best value among feðXs; P Þ
(1 � s � S) while fmax

e (e ¼ 1; . . . ; E) is the maximum
value among feðXs; P Þ (1 � s � S). Then the euclidean dis-
tance from point of Xs to the best point, denoted as EDs,
can be defined as:

EDs ¼
ffiXE
e¼1

We � feðXs; P Þ � fbeste

fmax
e

� 	2

vuut : (6)

We is the optimization weight for factor fe andPE
e¼1 We ¼ 1. When developers require some factors to

have more importance than others in the optimization, they
can increase the optimization weight of these factors. To get
a final result that optimizes (minimizes) this objective func-
tion, Triones traverses all possible data placement configu-
rations. For each configuration, the value of each optimizing
factor it could offer will be calculated. Then the configura-
tion maps to a point in the multi-dimension geometric
space. By setting a best point and a maximum point from
the components of all points, each EDs can be gotten. Thus,
the configuration with the smallest value of EDs corre-
sponds to the optimized result of the objective function.

Note that this equation is also valid for simple require-
ments. Under this circumstance, the only factor derived
fromX and P is in Equation (6), the optimization weight for
this factor is 100 percent, and the final result corresponds
to the best point.

4.2 Discussion

Table 1 lists main mathematical notations defined and used
in Triones. In addition, there are some features of Triones
that need discussion:

Generality. As can be seen from the previous definitions,
Triones is not oriented to any specific factor. It is general
enough to adopt as many quantifiable factors as needed for
data placement optimization in the multi-cloud storage. The
combination of factors to be optimized can also be arbitrary.
Thus, both single objective and multi-objective optimization
can be conducted in Triones. This feature is quite useful for
the long-time effectiveness of the model. New factors as
well as new requirements on optimization will be raised
quite possibly in the future. Even so, Triones can give sys-
tem or application developers a powerful tool to get opti-
mized results on these new factors and requirements, which
cannot be realised by ways of choosing data placement con-
figurations randomly.

Dynamicity. Triones does support dynamic parameters.
The parameters can change in diverse ways, e.g., the joining
of new cloud storage providers or the price variation of a
provider. With a systematic definition, Triones is able to
immediately update these parameter changes into variable
set X and constant coefficient matrix P . In this way, new
variables and constants can be used to calculate new opti-
mized configurations.

Complexity. Triones has to traverse all possible data
placement configurations to find one that minimizes the
objective function. The time complexity of this process is

Oð2NÞ, in which N is the number of cloud storage provider
candidates. In the real world, N is relatively small and
usually less than 20 [6], [7]. Hence, the traverse process is
still computationally feasible.

4.3 Data Migration

The changing of the optimized data placement configura-
tion causes data migration. Several factors can cause
configuration change such as the change of cloud storage
provider parameters, optimization requirements, and
data access patterns. However, the former two factors do
not change often. For example, the eight cloud storage
providers used in our evaluation all have their regular
services for years. Rackspace Cloudfiles [29] keeps its
pricing strategy unchanged for nearly two years. Ama-
zon-S3 [20] only has two pricing changes in 2014. In terms
of optimization requirements, developers will not change
them frequently due to the characteristics of specific
applications. As a result, the main trigger for data migra-
tion is the change of access patterns. Considerable access
pattern variation can cause the frequent configuration
change [7]. However, applications like data backup, docu-
ment archiving and health-care recording, which domi-
nate the usage of multi-cloud storage [2], [3], [4], [5], [6],
[7], will suffer little data migration due to their low and
steady access patterns.

With Triones, developers can get the optimized configu-
rations for different access patterns. Besides, developers can
also get the information on the cost, the real data size, and
the real requests needed by a migration from Triones. We
formulate these three factors as follows:

TABLE 1
Some Main Mathematical Notations Defined

and Their Descriptions

Definition Description

N the number of cloud storage providers under
consideration

S the number of data placement configurations
generated from N providers by using erasure
coding

P the constant coefficient matrix, representing
the characteristics of all providers, for the
non-linear programming

xi a boolean value that represents whether
provider i (1 � i � N) is used or not in the
final configuration

ðn; kÞ the erasure coding parameter (1 < k < n ¼PN
i¼1 xi)

X the optimization result consisting of xi
and ðn; kÞ

Xs a specific value ofX that corresponds to
a specific data placement configuration

EDs The euclidean distance from the point
corresponding toXs to the best point in the
multi-dimension geometric space

SU ET AL.: SYSTEMATIC DATA PLACEMENT OPTIMIZATION IN MULTI-CLOUD STORAGE FOR COMPLEX REQUIREMENTS 1969

Oc ¼ Vout Xold; Qs;Qnð Þ þVin Xnew;Qs;Qnð Þ;
Q
0
n ¼ kold þ nnewð Þ �Qn;

Q
0
s ¼ 1þ nnew

knew

� �
�Qs:

8><
>: (7)

In this equation, Qn is the total number of the data objects
needed for migration and Qs is their size. Migrating an
object includes: reading the data blocks from the old config-
uration Xold with the cost of Vout, reconstructing the object,
dividing the object with new configuration Xnew, and finally
uploading the new blocks with the cost of Vin. Reconstruct-
ing the original data and re-encoding the data are per-
formed locally, thus such cost is not considered.
Equation (7) uses derived components of Equation (4), in
which Vout is calculated by using j ¼ 2; 4 (Qs ¼ R2ðtÞ; Qn ¼
R4ðtÞ) and Vin is calculated by using j ¼ 3; 5 (Qs ¼ R3ðtÞ;
Qn ¼ R5ðtÞ). Oc becomes large with the increasing of Qn and
Qs. Due to the properties of erasure coding, the real requests

consumed (Q
0
n) during the migration and the real size of

data needed to be transferred (Q
0
s) differ from Qn and Qs

respectively, as shown in Equation (7).
The cost of data migration is orthogonal to the data place-

ment configuration optimization studied in this paper.
However, the cost is very important for developers to make
decisions on whether to migrate or not, considering applica-
tion specific characteristics. For example, if the optimized
configuration change is temporal and the cost overhead is
large, it will be wiser not to migrate. But if the benefits of
the new optimized configuration cover the cost overhead
and benefits of the old one, migration can be performed. As
Triones does not have enough information of upper-layer
systems or applications, automatic data migration is not
possible. Thus, Triones provides migration information
without making the final decision for developers.

5 DESIGN AND IMPLEMENTATION OF TRIONES

In this section, we show the design and implementation of
the model of Triones. It acts as a storage driver to help
developers effectively place the data of their systems or
applications in the multi-cloud storage. Fig. 3 presents the
components that compose Triones. Triones has three pro-
cess modules and four configuration files. These configura-
tion files are either input for the modules or output of them.
The three modules are responsible for calculating the
optimization results, using erasure coding for data object
dividing/reconstructing, and interacting with underlying
cloud storage providers for transferring data blocks.

We provide simple APIs for developers to set their
requirements and operate data objects in the multi-cloud

storage. Table 2 presents main APIs of Triones. Besides
basic APIs like read, write, delete, and get the optimized
configurations, Triones offers two explicit migration-
relevant interfaces getMigCost and getMigSize to provide
information on data migration.

5.1 Configuration Files

In the four configuration files, two files, i.e., the Rules.cfg and
the SystemPatterns.cfg, are required to be set by developers
manually. The other two files are managed by Triones auto-
matically. In Triones, the optimization results are calculated
for each data object that would be stored in the multi-cloud
storage. Therefore, the requirements should also be set for
each object. We use data group in Triones to classify data
objects into groups and reduce the calculation overhead. A
data group can contain only one data object or a set of data
objects that have the same or very similar properties. Tri-
ones does not set strict rules on the classification of data
objects. It is the developers who can decide how to batch
different data objects into the same group. For example, one
developer may choose to group objects of his/her system
depending on their access times (10, 100, 1,000 s, etc.).
Another developer would probably put all the objects into
the same group, as he/she wants to get the same optimiza-
tion result on vendor lock-in level for each object. As shown
in Fig. 3, both developers’ requirements and optimization
results are based on the unit of data group.

Rules.cfg. The Rules.cfg is used for developers to set their
requirements, i.e., optimization and constraint rules. In the
Optimization section of each data group, each row represents
a factor that is supported by Triones. The first column

Fig. 3. The components of Triones. They consist of three process mod-
ules and four configuration files.

TABLE 2
Main APIs Provided by Triones

APIs Description

readðobj; conf; loc pathÞ read data object obj from data placement configuration conf into the local path loc path
writeðobj; conf; loc pathÞ write data object obj from the local path loc path to data placement configuration conf

deleteðobj; confÞ delete data object objwithin data placement configuration conf

getOptimizedConfðÞ calculate the optimized configurations for data placement in the multi-cloud storage
getMigCostðobjs; s; src conf; des confÞ get the cost of migrating objswith total size s from src conf to des conf

getMigSizeðobjs; s; src conf; des confÞ get the real requests and data size of migrating objswith total size s from src conf to des conf

The objs is a list of data objects in a data group.

1970 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 6, JUNE 2016

following the factor name is a boolean value. A true indi-
cates that this factor is demanded to be optimized for this
group while a false means no optimization on it. The second
column is a float value reflecting the optimization weight
for this factor if it is set true. If developers only choose the
factors to be optimized and do not set their optimization
weights (i.e., the values in the second column of these fac-
tors are all 0), Triones will assign the same optimization
weight to them.

Algorithm 1. Optimization Results Calculation

Input: Rul:cfg for the Rules:cfg, Sys:cfg for the System
Patterns:cfg, Pro:cfg for the Providers:cfg, lastTime,
success

Output: Opt:cfg for the OptimizationResults:cfg
1: global P ½�½� " Constant coefficient matrix
2: providers getProvidersðPro:cfgÞ
3: lockðÞ
4: if currentTimeðÞ � lastTime > THRESHOLD

or success ¼¼ false then
5: success false
6: lastTime currentTimeðÞ
7: for pro 2 providers do
8: updateðpro:url; P Þ
9: end for
10: flushðP Þ
11: success true
12: end if
13: unlockðÞ
14: data groups getDataGroupsðRul:cfgÞ
15: X getAllPlacementConfigðprovidersÞ
16: for dg 2 data groups do
17: min MAXFLOAT
18: res NULL
19: csts getConstraintsðRul:cfg; dgÞ
20: opts getOptReqAndWeightðRul:cfg; dgÞ
21: stts getStatisticsðSys:cfg; dgÞ
22: forX s 2 X do
23: if subtoConstraintsðX s; csts; stts; P Þ then
24: insertðcands;X sÞ
25: end if
26: end for
27: bp getBestPointðcands; opts; stts; P Þ
28: mp getMaximumPointðcands; opts; stts; P Þ
29: forX s 2 cands do
30: ED s calEDðX s; opts; stts; bp;mp; P Þ
31: if EDs < min then
32: min ED s
33: res X s
34: end if
35: end for
36: vals getValueofFactorsðres; stts; P Þ
37: output dg; res; vals to Opt:cfg
38: clear csts; opts; stts; cands
39: end for

In the Constraint section of each data group, each row
also stands for a factor that is supported by Triones. A rule
specifying the constraints on the factor follows the factor
name. The signs used in the constraint rule consist of ¼, < ,
> , >¼, <¼, &&, and jj. A null means no constraint is set
on this factor. When Triones does incorporate new factors

of cloud storage, developers only need to set the Rules.cfg if
they intend to use them.

SystemPatterns.cfg. This configuration file is to present the
system patterns of each data group. Currently, only resource
statistics are needed. The Resource Statistics section of each
data group specifies how the data objects in this group con-
sume resources in upper-level systems. They are the total
storage amount of these objects and their access times. With
these information, the amount of transfer-in and transfer-out
can also be calculated. These information can be easily
offered by system or application developers as they can get
or predict them through the system or application logs [7],
[13], [23]. As developersmay design their systems or applica-
tions inmuch diverse ways, we avoid directly analyzing logs
of the systems or applications but require developers to pro-
vide such statistics [13]. These statistics are used to compute
the cost of stripping these data objects in the multi-cloud
storage, as shown in Equation (4). Note that to a data group,

RjðtÞ
0
sðj ¼ 1; 2; . . . ; 5Þ are the resources consumed on the

data objects of this group at time t.
Providers.cfg. The Providers.cfg contains the information

(name and URL) of each candidate cloud storage provider
used in Triones. An optimized data placement configura-
tion is chosen depending on these candidate providers. The
URLs are used by Triones to interact with these underlying
cloud storage providers. When new cloud storage providers
are joining in or old ones are removed, Triones will modify
this configuration file and make these changes available.

OptimizationResults.cfg. After Triones successfully calcu-
lates the optimization results, it will output the result for
each data group into the OptimizationResults.cfg. One result
is a data placement configuration that satisfies developers’
requirements subject to certain constraints. System or appli-
cation developers then record these optimized configura-
tions and use them for following data operations (like read,
write, and migrate) over the multi-cloud storage. Besides,
Triones also outputs the configurations’ values on all factors
(cost, availability, etc.) in the OptimizationResults.cfg, as dis-
played in Fig. 3. This helps developers get the benefits
brought by the optimized configuration.

5.2 Process Modules

The process modules in Triones are the Optimization Mod-
ule, the Coding Module, and the Storage Module.

Optimization module. The Optimization Module is respon-
sible for choosing the optimized data placement configura-
tions. When it is activated, it takes configuration files of the
Rules.cfg, the SystemPatterns.cfg, and the Providers.cfg as
input, and calculates optimization results into the Optimiza-
tionResults.cfg. The calculation procedure is summarized in
Algorithm 1. As presented in Algorithm 1, the Optimization
Module will firstly get the underlying cloud storage pro-
viders from the Providers.cfg (line 2) and update the constant
coefficient matrix P through the URLs of them (lines 7�9).
As the characteristics of these providers (such as price strat-
egies and guaranteed availability) do not change so often,
we set THRESHOLD to 1,209,600 seconds (two weeks) to
ensure that the characteristics can be updated every two
week (lines 4). In Triones, the constant coefficient matrix is
kept globally (line 1). Hence, synchronization is needed to

SU ET AL.: SYSTEMATIC DATA PLACEMENT OPTIMIZATION IN MULTI-CLOUD STORAGE FOR COMPLEX REQUIREMENTS 1971

avoid uncorrect optimization calculation when P is being
updated (line 3 and line 13). But the overhead of synchroni-
zation can be neglected, as the updating action occurs only
every two week. After the updating action completes, the
constant coefficient matrix will be flushed to disks for
permanence (line 10). We also use a boolean flag success
to indicate whether the updating and flushing actions
complete successfully. If failures occur in Triones during
the execution of any action, they will be re-executed after
Triones restarts as success is kept false (lines 4�5). The
modification of lastTime and success can be made perma-
nent by logging [24].

The Optimization Module then gets the data groups from
the Rules.cfg (line 14) as well as all possible data placement
configurations (line 15). To each data group, the Optimiza-
tion Module firstly obtains the constraint rules for it
(line 19), and omits the data placement configurations that
cannot be mapped into the multi-dimension geometric
space (lines 22�26). In the next step, the euclidean distance
associated with each candidate data placement configura-
tion is calculated (lines 29� 35) through the best point and
the maximum point (lines 27�28). The data placement con-
figuration with the minimum euclidean distance is the final
optimization result for this data group (lines 32�33). Such
configuration, along with its values on all factors, will be
output to the OptimizationResults.cfg for developers (lines
36�37) in human-readable format, as displayed in Fig. 3.

Coding module. Erasure coding is applied in the Coding
Module for data blocks encoding and decoding. When a
write request of a data object arrives, the Coding Module
divides this object into k data blocks and generate another
n� k encoded blocks. These n data blocks will be uploaded
to the n underlying cloud storage providers in the data
placement configuration provided by developers. The real
data transfer will be performed in the Storage Module. In
reading a data object, k data blocks will be retrieved for the
Coding Module to reconstruct the original object.

Storage module. The Storage Module is in charge of inter-
acting with underlying cloud storage providers to transfer
(PUT or GET) data blocks. A main function of the Storage
Module is to mask the differences among these cloud stor-
age providers. In uploading n blocks of a data object, the
Storage Module returns only when all the n underlying
cloud storage providers reply successfully. This is to ensure

the fault-tolerance level required by system or application
developers. In retrieving k data blocks, the Storage Module
only select k providers instead of all the n ones. We use a
principle for the selection: if access latency is required to be
optimized, the k fastest providers are selected, or the k
cheapest ones are selected. In the case that the Storage Mod-
ule fails to retrieve blocks from one or more providers, the
ðkþ 1Þth; ðkþ 2Þth; . . . ; fastest or cheapest providers will be
selected. In addition, the Storage Module will create multi-
ple threads to communicate with these cloud storage pro-
viders in data read and write. This helps to make the most
of parallelism provided by the underlying providers and
improve the access performance.

Both the Coding Module and the Storage Module are
stateless and do not need centralized coordination. Thus,
they scale well for developers to build their systems or
applications.

5.3 Implementation

We implement Triones in Python in 2,000 LOCs. The APIs
exposed to developers are also in Python. In the Coding
Module, we use Zfec [25], an open-source library that
adopts fast classic RS-coding [8], to implement erasure cod-
ing. In addition, we use Apache LibCloud [26] in the imple-
mentation of the Storage Module. With Apache LibCloud,
new cloud storage providers can be easily added to and
supported by the Storage Module.

6 EVALUATION

6.1 Experimental Setup

We have deployed a prototype storage system to evaluate
the effectiveness of Triones. It has run in experimental vir-
tual machines built in Singapore through VPS [27]. As illus-
trated in Fig. 4, the storage system keeps metadata in
Cassandra in the local, and stores its data objects in the
multi-cloud storage through Triones. The metadata contains
the data placement optimization results. The design details
of this prototype system is beyond the scope of this paper,
so we do not discuss them further. The evaluation is only
conducted for Triones instead of the system.

We choose eight commercial cloud storage providers
[20], [28], [29] as the candidate storage backends for data
placement. They are listed in Table 3. We consider cost,

Fig. 4. The architecture of the prototype storage system that uses
Triones to store data in the multi-cloud storage.

TABLE 3
The Information of Eight Cloud Storage Providers

Provider
Price (at the first ladder)

Location

Storage Transfer out GET Req. PUT Req.

GS 0.026 0.12 0.01 0.1 Default

S3-IRL 0.03 0.12 0.004 0.05 Ireland

S3-TKY 0.033 0.201 0.0037 0.047 Japan

S3-CA 0.033 0.12 0.0044 0.055 USA

S3-SA 0.0408 0.25 0.0056 0.07 Brazil

CF-SYD 0.1 0.12 0 0 Australia
CF-VA 0.1 0.12 0 0 USA

CF-HKG 0.1 0.12 0 0
HongKong,

China

The prices for data storage, data transfer out, and GET/PUT requests are mea-
sured in dollars/month*GB, dollars/GB, and dollars/10,000 requests respec-
tively. GS is short for Google Storage and CF is short for Cloudfiles.

1972 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 6, JUNE 2016

access latency, fault-tolerance level, vendor lock-in level,
durability, and availability for data placement configura-
tions in Triones. These factors have been defined in
Section 3. As all these eight cloud storage providers cost
free for data transfer-in, we do not consider this for calculat-
ing the cost. The guaranteed durability and availability of
all the providers are 99.9999 and 99.9 percent respectively.

We simulate the behaviors of the storage system accord-
ing to the workloads collected from a real file sharing appli-
cation (http://thu.meepo.org/) used in Tsinghua
University. The workloads captured the access logs from
many users. As shown in Table 4, two data sets containing
different number of data objects with different access pat-
terns are collected. Data Set 1 consists of data objects with rel-
atively high access frequency. Each data object was accessed
for around 1,000 times in a month, most of which were read
requests. Data Set 2 provides cold data as each object was
read for less than five times in a month, with no write
requests. Each data set maps to a data group in Triones.

We set unified constraints on each data group to Tri-
ones. Vendor lock-in level is no larger than 0.5. This means
at least two providers should be included in the final opti-
mized configurations. Durability of the constructed config-
uration is no less than 99.999999 percent while availability
is no less than 99.999 percent. Moreover, it should tolerate
failures of at least one provider, i.e., the fault-tolerance
level is no less than 1. Note that for readability, we do a lit-
tle change of Equation (1) to represent the final data place-
ment configuration in the evaluation. We use the name of
the cloud storage provider instead of the number 1 if this
provider (i.e., xi) is chosen in the configuration. If one pro-
vider is not chosen, its name as well as the number 0 does
not occur in the final configuration.

6.2 Single Objective Optimization

This section provides the results for optimization on a single
objective. Actually there are many single factors that can
be optimized. Due to space limitation, we only report the
results of cost and access latency here. These two factors are
cared about more than others by developers when
deploying systems or applications in the multi-cloud stor-
age [2], [3], [4], [7]. To test access latency, we set a
measurement unit that consists of a write request followed
by a read request [5], [6]. Each unit is executed periodically
(every one minute) in the prototype storage system. To each
request, the size of data object is chosen randomly.

Cost. For Data Set 1, Triones calculates an optimized data
placement configuration, X1

c ,
3 to keep the data objects. X1

c

uses fCF-SYD, CF-HKG, GS, kð2Þg. Among all the

configurations that can be built from the eight cloud storage

providers, X1
c offers the lowest cost,4 $1122.37, for Data Set

1. For Data Set 2, Triones applies fS3-IRL, S3-CA, GS, kð2Þg
to build another configuration X2

c . The cost of X
2
c is $101.19,

which is still the lowest to keep data objects of Data Set 2
that are mainly for storage. As data objects in Data Set 1 are
frequently accessed, the cloud storage providers chosen are
relatively cheap in access. On the other hand, the providers

in X2
c are cheap in data storage. If we use X1

c for Data Set 2,
the cost will be $121.07. This is about 19.65 percent higher

than that of X2
c . Similarly, if we move data objects of Data

Set 1 into X2
c , the cost rises to $1127.44. Note that for Data

Set 1, GS uses two pricing ladders on data transfer-out while
other providers only use one. For Data Set 2, all providers
only use one pricing ladder.

We further show how Triones works when more pricing
ladders are involved by simulation. We extend Data Set 1 to
change its transfer-out size from 1 to 400 TB (keeping each
data object with 1,000 get requests). Meanwhile, we vary the
storage of Data Set 2 from 1 to 400 TB (keeping each data
object with 1 get request). Triones adapts well to more pric-
ing ladders and generates the corresponding results to
achieve optimal cost. For the changing of Data Set 1, Triones
uses X1

ladder1
:fCF-SYD, CF-HKG, CF-VA, kð2Þg if the trans-

fer-out amount is less than 6 TB, and X1
ladder2

:fGS, CF-HKG,

CF-VA, kð2Þg if the amount is larger than 6 TB. When the
transfer-out is 400 TB (four ladders are reached on transfer-
out), using X1

ladder1
costs $33,282.4, higher than that

($33,184.19) of X1
ladder2

. However, when the transfer-out is

only 4 TB, X1
ladder2

brings higher cost ($483.98) than X1
ladder1

($480.6). For Data Set 2, Triones generates the same result as
X2

ladder:fGS, S3-IRL, S3-CA, kð2Þg despite the number of pric-
ing ladders involved.

Access latency. For access latency optimization, Triones
correspondingly chooses a data placement configuration
Xl. Xl utilizes fS3-TKY, GS, CF-SYD, CF-HKG, kð3Þg.
The work of mLibCloud [6] shows that a data placement
configuration with n ¼ 5 and k ¼ 3 could reduce data
access latency, especially read latency. It randomly uses
two configurations as Xmlib1 :fS3-IRL, S3-CA, S3-SA, GS,

CF-VA, kð3Þg and Xmlib2 :fS3-TKY, S3-CA, S3-SA, CF-SYD,

CF-HKG, kð3Þg.
We compare the optimized configuration computed by

Triones to the ones used in mLibCloud. As presented
in Fig. 5, Xl outperforms both Xmlib1 and Xmlib2 in data

TABLE 4
Experimental Data Sets

Data Objects Storage Transfer Out GET Num. Put Num.

Set 1 9,930 9.46 GB 9,465.39 GB 9,929.7 k 14.86 k

Set 2 99,905 292.36 GB 732.25 GB 250.12 k 0

Fig. 5. Access latency from the virtual machines in Singapore to Xl,
Xmlib1 ,Xmlib2 .

3. The superscript numbers of X refer to the data sets. The subscript
letters ofX refer to the factors to be optimized, in which c is for cost, l is
for access latency, f is for fault-tolerance level, and v is for vendor lock-
in level.

4. The cost discussed in the evaluation refers to the dollars one has
to pay in a month.

SU ET AL.: SYSTEMATIC DATA PLACEMENT OPTIMIZATION IN MULTI-CLOUD STORAGE FOR COMPLEX REQUIREMENTS 1973

access latency5 from Singapore to the multi-cloud stor-
age. For example, in writing 16 MB-size objects, the
latency to Xl is 4.68 s. It is about 57.26 and 57.84 percent
lower than that to Xmlib1 and Xmlib2 respectively. The

latency of reading 16 MB-size objects from Xl is 3.78 s,
about 48.22 percent less than that from Xmlib1 and similar

to that from Xmlib2 .

As mentioned in Section 5, Triones chooses k fastest pro-
viders in a configuration to retrieve data blocks for data
read, if access latency is one of the optimization objectives.
Both of Xl and Xmlib2 have k ¼ 3 as well as cloud storage

providers including S3-TKY, CF-SYD, and CF-HKG. These
three providers are the fastest three ones among the eight to
the virtual machines located in Singapore. Hence, we can
see from Fig. 5b that read latency from Xl and Xmlib2 differ

little from each other. Besides, in data write, Triones must
put all n data blocks to n providers composing of a data
placement configuration, no matter how slow one provider
is. That is why write latency is higher than read latency for
a configuration, as shown in Fig. 5a.

6.3 Multi-Objective Optimization

For multi-objective optimization in Triones, there can be
numerous combinations of factors to be optimized. We have
chosen the optimization requirements depending on the
features of these two data sets to show how Triones works
on multi-objective data placement optimization. We firstly
set the objectives to have the same optimization weight.

Data Set 1. For Data Set 1 with intensive access, we pre-
fer both cost and access latency to be optimized at the same
time. Triones uses a data placement configuration, X1

c;l, to

satisfy the complex optimization requirement. X1
c;l happens

to be the same as Xl, which is the configuration for only

optimizing access latency. The cost of X1
c;l is $1,325.33,

18.08 percent more expensive than X1
c . However, for both

read and write operations, X1
c;l could reduce the latency on

different sizes (from 32 KB to 16 MB) by 30�50 percent

compared to X1
c . This is reasonable when cost is not the

only concern, i.e., cost and access latency have the same

optimization weight. Compared to X1
c;l, the cost of Xmlib1

and Xmlib2 are $1,388.69 and $1,544.67, which is 4.78 and

16.55 percent higher respectively. Thus, we can see that a
randomly chosen data placement configuration can hardly
satisfy complex requirements involving optimizing multi-
ple factors in the multi-cloud storage. This further proves
the necessity of a systematic model for both single and
multiple objective optimization.

Now suppose we want to further consider optimizing
fault-tolerance level and vendor lock-in level for Data
Set 1. A higher fault-tolerance level could help improve
the availability of access services. Meanwhile, a lower
vendor lock-in level helps mitigate the limitation of the
underlying cloud storage providers. The requirement is
to optimize cost, access latency, fault-tolerance level, and
vendor lock-in level.

In this case, Triones computes the data placement configu-
ration X1

c;l;v;f as fS3-TKY, S3-IRL, S3-CA, GS, CF-SYD, CF-
HKG, kð3Þg. It is effective in balancing more factors.

Compared to X1
c , X

1
c;l;v;f improves fault-tolerance level by

200 percent, reduces vendor lock-in level by 49.85 percent,
and reduces read latency (RL) by about 50 percent, as pre-

sented in Fig. 6. However, the cost ofX1
c;l;v;f rises by 13.19 per-

cent to keep more redundant data blocks. In contrast with

X1
c;l, X

1
c;l;v;f reduces cost by 4.14 percent as well as achieving

3� fault-tolerance level. Moreover, the vendor lock-in level of

X1
c;l;v;f is reduced by 33.2 percent. This is at the expense of

access latency. For example, X1
c;l;v;f brings 93.92 percent

higher latency in writing 8MB-size data objects than X1
c;l. But

in data read latency, X1
c;l;v;f and X1

c;l differ little from each

other because of the reading mode used in Triones, as dis-
cussed in Section 6.2.

Data Set 2.Data Set 2 contains data objects that are mainly
storedwith little access. To such access patterns, we are inter-
ested in cost, vendor lock-in level, and fault-tolerance level
for them in the prototype storage system. Fault-tolerance
level is essential to guarantee the durability of cold data that
will be stored in the cloud storage for a long time. We do not
consider optimizing access latency because of the low access
frequency of Data Set 2. The complex requirement here is the
optimization for all these three factors. Triones gets a data
placement configuration, X2

c;v;f , which uses all the eight pro-

viders and k ¼ 2. As listed in Table 5,X2
c;v;f performs well in

cost, vendor lock-in level, and fault-tolerance level at the

same time. Compared to X2
c , X

2
c;v;f reduces the vendor lock-

in level by 62.46 percent. Besides, the fault-tolerance level of

X2
c;v;f is improved by 5�. However, as more data blocks have

to be kept, the cost of X2
c;v;f increases by 72.95 percent com-

paredwith that ofX2
c .

Fig. 6. The cost, fault-tolerance level, read latency, write latency (WL),
and vendor lock-in level (VLL) ofX1

c;l;v;f in comparison withX1
c;l andX1

c .

TABLE 5
The Cost, Vendor Lock-in Level, and Fault-Tolerance

Level ofX2
c;v;f andX2

c

Cost ($) Vendor Lock-in Level Fault-tolerance level

X2
c

101.19 0.333 1

X2
c;v;f

175.01 0.125 6

5. The access latency discussed in the evaluation refers to 90th-
percentile access latency. Moreover, the access latency does not
contain the time for erasure coding. The overhead of data encod-
ing/decoding is discussed in Section 6.4.

1974 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 6, JUNE 2016

Varying optimization weight. Now let’s see how Triones
balances among multiple objectives in different optimiza-
tion weight. We consider optimizing cost and fault-
tolerance level simultaneously for data objects in Data Set
2. Thus, we use Wc to represent the optimization weight
for cost and Wf for fault-tolerance level, where
Wc þWf ¼ 1. Fig. 7 presents the cost and fault-tolerance
level of configurations that are calculated under different
value of Wc. We can observe that Triones is able to choose
data placement configurations to balance among cost and
fault-tolerance level, according to their optimization
weight. For example, when we set Wc ¼ 5% and
Wf ¼ 95%, it means that we place fault-tolerance level at a
more important position in the optimization. Triones gets
a configuration that provides cost of $242.57 and fault-tol-
erance level of 7 (k=1 is allowed in this case). While we set
Wc ¼ 95% and Wf ¼ 5%, which means cost is more cared
about, a configuration with cost of $126.01 and fault-toler-
ance level of 3 is used. In this configuration, the cost
decreases by 48.05 percent (more important) while the
fault-tolerance level decreases by 57.14 percent (less
important), compared to that of Wc ¼ 5%.

6.4 Overhead of Triones

Triones is based on erasure coding and non-linear program-
ming. Hence, the overhead of the model consists of the time
to encode/decode data blocks as well as computing an opti-
mization result.

Fig. 8a shows the time spent in encoding/decoding blocks
of 16 MB-size data objects under different erasure coding
parameters of ðn; kÞ. These parameters are chosen according
to the configurations built above. We still use Zfec for the
experiment. The time spent under each parameter is aver-
aged over 10,000 tests. We can see that the time spent in
decoding is about 50 percent less than that in encoding. Even
so, both of them are about 0.5 s in 16 MB-size data objects.
This overhead is a small part of the total latency of accessing
these data objects in the multi-cloud storage. We think the
overhead imposed by erasure coding is reasonable given the
benefits it brings to stripe data in the multi-cloud storage,
compared to single cloud storage (e.g., availability or vendor
lock-in) or full-replication policy (e.g., cost).

As discussed in Section 4 and Section 5, the complexity
of Algorithm 1 is Oð2NÞ. Fig. 8b illustrates that when the

number of cloud storage providers increases, the time for
the calculation of Triones on one data group rises expo-
nentially. But as N is usually small, the complexity is not
a concern here. For example, when N is 8, the overhead
of getting an optimized configuration on one data group
is only 0.0018 s. However, with new cloud storage pro-
viders are made available, this calculation might take lon-
ger time. Fortunately, the distance measure can be
performed independently for each configuration, i.e., the
calculation can be parallelized [30] to reduce the time.
Furthermore, the Pruning Algorithms [31] can be used to
further reduce the complexity of the calculation.

6.5 Configuration Change Frequency

We have used a trace on 100 documents (each around 3 MB)
to test the frequency of configuration change. This trace is
similar to that used in Scalia [7] and was collected from the
file sharing application in Tsinghua University. For the first
ten days after being uploaded, each document got 150�200
reads per day. The access frequency decreased from 150
times/day to 1 time/day in the next twenty days. Then the
frequency kept steady (below three times/day) ever after.

Four optimization requirements are set: optimizing cost
(denoted as OR1), optimizing latency (OR2), optimizing
both cost and access latency (OR3), and optimizing cost,
access latency, fault-tolerance level as well as vendor lock-
in level (OR4). For the complex requirements, every objec-
tive has the same weight.

As for the results, three configuration changes happen
for OR1. OR2, OR3, and OR4 do not incur any configuration
change. For OR1, configuration changes occur at the access
frequencies of 12 times/day, 10 times/day, and five times/
day respectively. This is because when access frequency
decreases, the cost of data storage accounts for a larger pro-
portion and causes the change of the data placement config-
uration intending cheaper cost on storage. It seems that the
frequencies causing the configuration change are close to
each other. However, this is intrinsic for the optimization
based on the provided information and will not influence
the effectiveness of Triones for OR1. In fact, the optimized
configuration for one frequency is suboptimal for anther.
For example, when the access frequency decreases to five
times/day, if the configuration (fS3-IRL, S3-CA, CF-VA,
kð2Þg) generated for 10 times/day is still used, the cost is
$0.176857. This is just slightly higher than the cost
($0.176829) of the optimized configuration (fS3-IRL, S3-CA,
GS, kð2Þg) for 5 times/day. The migration costs of the docu-
ments between these two configurations (in two different

Fig. 8. The overhead of Triones. The results are tested in the machine
with Intel Xeon X5650 (2.67 GHz) and 16 GB RAM.

Fig. 7. The cost and fault-tolerance level of data placement configura-
tions under differentWc.

SU ET AL.: SYSTEMATIC DATA PLACEMENT OPTIMIZATION IN MULTI-CLOUD STORAGE FOR COMPLEX REQUIREMENTS 1975

directions) are $0.03633 and $0.03726 respectively. As a
result, if the access frequency remains in the range of
10 times/day and five times/day (or in the around ranges),
keeping the configurations without data migration might be
a good decision. Certainly, developers can rely on Triones
to make other migration decisions. In any case, Triones can
work effectively for OR1 compared to randomly choosing
data placement configurations. On the other hand, OR2

does not cause the change of configuration because OR2

only optimizes latency while access pattern change only
influences cost. For OR3 and OR4, the cost changed by
access pattern has less impact on changing the configuration
for optimizing multiple objectives.

7 RELATED WORK

Many previous works are related to Triones and have
inspired Triones. We review these works in this section.

Multi-cloud storage based on erasure coding. RACS [2] was
the first work to put forward the idea of applying erasure
coding in the multi-cloud storage. The goal was to avoid
vendor lock-in and improve the service availability. HAIL
[4] aimed at protecting the availability and security of data
by using erasure coding in the multi-cloud storage. DepSky
[5] tried to guarantee the reliability and security of applica-
tions through encryption and encoding at reasonable cost
and access latency. mLibCloud [6] attempted to achieve uni-
form access and reduce access latency under such circum-
stance. However, these studies concentrated on using the
multi-cloud storage in ad-hoc ways. The schemas or models
in their systems only randomly chose data placement con-
figurations to achieve certain features. Compared with
them, Triones is a systematic model to address the optimi-
zation issue for developers in the multi-clouds storage. It
enables them to deploy their systems or applications in an
optimized way under their simple or complex require-
ments. One similar work to Triones is Scalia [7]. Scalia used
an adaptive scheme to choose different data placement con-
figurations for offering the optimal cost while satisfying cer-
tain constraints. However, from Triones’ point of view, the
model in Scalia only conducted single objective optimiza-
tion. Triones does the work for both single objective as well
as multi-objective optimization.

Optimization in cloud platforms. Optimization has been
studied in cloud platforms by previous studies for years.
For example, the work in [32] focused on multi-objective
optimization for deploying online social services in master-
slave cloud platforms. The work in [33], [34] proposed opti-
mization solutions for the scheduling of many dynamic
computing tasks to satisfy multiple objectives. Compared to
these studies, the assumptions and usage scenarios of
multi-cloud storage are different. As mentioned in Section 3,
the providers in the multi-cloud storage do not support exe-
cuting any code [2], [5], [7]. They can only be used by their
storage interfaces without modifications. How tasks are
running and managed in these cloud storage providers can-
not be gotten outside. Moreover, in multi-cloud storage that
is based on erasure coding, the factors (e.g., vendor lock-in
or availability) cared about by system or application devel-
opers have specific characteristics. Thus, optimization in
such scenario has to be explored.

Coding schemes. The design of different coding schemes
have been widely studied in storage systems. NCCloud [3]
proposed to use functional minimum-storage regenerating
code to reduce the cost of storage repair in the multi-cloud
storage if one cloud storage provider fails permanently. The
work in [35] presented how to use the least amount of data
for XOR-based erasure coding during recovery and designed
a new coding scheme based on RS-code to deal with
degraded reads. In the in-house storage scenario, Windows
Azure employed Local Reconstruction Codes (LRC) [36] to
reduce the number of data blocks that have to be read to
reconstruct lost or corrupted blocks, without improving the
storage overhead. Triones does not do any improvement in
coding schemes. We use the classic RS-code [8] to stripe data
in themulti-cloud storage. Ourwork is orthogonal to this cat-
egory of related works. New coding schemes can be applied
in the Coding Module and Triones can then conduct new
optimizationwith these coding schemes.

8 CONCLUSION

This paper presents Triones, a systematic model to formu-
late and optimize data placement in multi-cloud storage
by using erasure coding. As a systematic approach, Tri-
ones tries its best to avoid ad-hoc ways of randomly
choosing data placement configurations. It uses non-linear
programming to define the problem of data placement
optimization. In this model, quantifiable factors under
consideration can be expressed in the inequalities of con-
straints as well as being put in the objective function. We
apply euclidean distance measure through geometric
space abstraction for the objective function to calculate the
optimization results. In this way, complex requirements
that are not considered in previous works can be easily
included in Triones. Furthermore, new factors and
requirements can be adopted in the model and optimized
by the same means. Triones helps system or application
developers to achieve the features of the multi-cloud stor-
age in an optimized way with reasonable overhead.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments. This work is supported
by National High-Tech R&D (863) Program of China
(2013AA01A213), Natural Science Foundation of China
(61433008, 61373145, 61170210, U1435216), Chinese Special
Project of Science and Technology (2013zx01039-002-002).

REFERENCES

[1] Computer sciences corp [Online]. Available: http://www.csc.
com/, Aug. 2015.

[2] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A
case for cloud storage diversity,” in Proc. 1st ACM Symp. Cloud
Comput., 2010, pp. 229–240.

[3] H. Chen, Y. Hu, P. Lee, and Y. Tang, “NCCloud: A network-
coding-based storage system in a cloud-of-clouds,” IEEE Trans.
Comput., vol. 63, no. 1, pp. 31–44, Jan. 2014.

[4] K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability
and integrity layer for cloud storage,” in Proc. 16th ACM Conf.
Comput. Commun. Security, 2009, pp. 187–198.

[5] A. Bessani, M. Correia, B. Quaresma, F. Andr�e, and P. Sousa,
“DepSky: Dependable and secure storage in a cloud-of-clouds,”
ACM Trans. Storage, vol. 9, no. 4, p. 12, 2013.

1976 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 6, JUNE 2016

[6] S. Mu, K. Chen, P. Gao, F. Ye, Y. Wu, and W. Zheng, “mlibcloud:
Providing high available and uniform accessing to multiple cloud
storages,” in Proc.ACM/IEEE 13th Int. Conf. Grid Comput., 2012,
pp. 201–208.

[7] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An adap-
tive scheme for efficient multi-cloud storage,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2012, p. 20.

[8] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[9] R. C. Singleton, “Maximum distance q-nary codes,” IEEE Trans.
Inf. Theory, vol. IT-10, no. 2, pp. 116–118, Apr. 1964.

[10] V. Pless, Introduction to the Theory of Error-Correcting Codes,
vol. 48. New York, NY, USA: Wiley, 2011.

[11] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. rep-
lication: A quantitative comparison,” in Proc. Revised Papers 1st
Int. Workshop Peer-to-Peer Syst., 2002, pp. 328–338.

[12] R. Rodrigues and B. Liskov, “High availability in DHTs: Erasure
coding vs. replication,” in Proc. 4th Int. Conf. Peer-to-Peer Syst.,
2005, pp. 226–239.

[13] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha, “Spanstore: Cost-effective geo-replicated storage
spanning multiple cloud services,” in Proc. 24th ACM Symp. Oper-
ating Syst. Principles, 2013, pp. 292–308.

[14] W. S. Shin and A. Ravindran, “Interactive multiple objective opti-
mization: Survey I – continuous case,” Comput. Operations Res.,
vol. 18, no. 1, pp. 97–114, 1991.

[15] R. T. Marler and J. S. Arora, “Survey of multi-objective optimiza-
tion methods for engineering,” Struct. Multidisciplinary Optimiza-
tion, vol. 26, no. 6, pp. 369–395, 2004.

[16] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA:
Athena Scientific, 1999.

[17] H. W. Kuhn, “Nonlinear programming: A historical view,” in
Traces and Emergence of Nonlinear Programming. New York, NY,
USA: Springer, 2014, pp. 393–414.

[18] J. A. Nelder and R. Mead, “A simplex method for function mini-
mization,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[19] P. Hinker and C. Hansen, “Geometric optimization,” in Proc. 4th
Conf. Vis., 1993, pp. 189–195.

[20] Amazon s3 [Online]. Available: http://aws.amazon.com/s3/,
Aug. 2015.

[21] Amazon outage [Online]. Available: http://venturebeat.com/2012/
06/29/amazon-outage-netflix-instagram-pinterest/, Jun. 2012.

[22] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L.
Barroso, C. Grimes, and S. Quinlan, “Availability in globally dis-
tributed storage systems,” in Proc. 9th USENIX Symp. Operating
Syst. Des. Implementation, 2010, pp. 61–74.

[23] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for
stateful services,” in Proc. 1st ACM Symp. Cloud Comput., 2010,
pp. 241–252.

[24] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Analysis and evolution of journaling file systems.” in
Proc. USENIX Annu. Techni. Conf., General Track, 2005, pp. 105–120.

[25] Python-zfec [Online]. Available: https://pypi.python.org/pypi/
zfec/, Aug. 2015.

[26] Apache libcloud [Online]. Available: http://libcloud.apache.org,
Aug. 2015.

[27] Cloud vps server hosting [Online]. Available: http://vps.net,
Aug. 2015.

[28] Google cloud storage [Online]. Available: https://cloud.google.
com/storage/, Aug. 2015.

[29] Rackspace cloudfiles [Online]. Available: http://www.rackspace.
com/cloud/files, Aug. 2015.

[30] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[31] L. Granvilliers, “A symbolic-numerical branch and prune algo-
rithm for solving non-linear polynomial systems,” J. Universal
Comput. Sci., vol. 4, no. 2, pp. 125–146, 1998.

[32] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” in Proc. IEEE INFOCOM,
2014, pp. 28–36.

[33] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, “Multi-
objective scheduling of many tasks in cloud platforms,” Future
Gener. Comput. Syst., vol. 37, pp. 309–320, 2014.

[34] F. Zhang, J. Cao, W. Tan, S. U. Khan, K. Li, and A. Y. Zomaya,
“Evolutionary scheduling of dynamic multitasking workloads for
Big-data analytics in elastic cloud,” IEEE Trans. Emerging Topics
Comput., vol. 2, no. 3, pp. 338–351, Sep. 2014.

[35] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: Minimizing I/O for recovery
and degraded reads,” in Proc. 10th USENIX Conf. File Storage
Technol., 2012, pp. 251–264.

[36] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin, et al., “Erasure coding in windows azure storage,” in
Proc. USENIX Conf. Annu. Techn. Conf., 2012, vol. 12, p. 2.

Maomeng Su received the BE degree from
University of Science and Technology Beijing,
China, in 2011. He is currently working toward
the PhD degree with the Department of Computer
Science and Technology, Tsinghua University,
Beijing, China. He is currently working on in-
memory key-value stores over new datacenter
networks. His research interests include cloud
storage systems, distributed systems, new data-
center networks, Remote Direct Memory Access
(RDMA), and key-value store systems.

Lei Zhang is a final year undergraduate student
with the Department of Computer Science and
Technology at Tsinghua University, Beijing,
China, and will receive the BE degree in 2015.
He is currently working on storage system and
algorithm optimization of cloud computing. His
research interests include distributed system,
storage system, reliable computing, grid comput-
ing, and parallel computing.

Yongwei Wu received the PhD degree in applied
mathematics from the Chinese Academy of Sci-
ences in 2002. He is currently a professor in com-
puter science and technology at Tsinghua
University of China. His research interests
include parallel and distributed processing, and
cloud storage. He has published more than 80
research publications and has received two Best
Paper Awards. He is currently on the editorial
board of the International Journal of Networked
and Distributed Computing and Communication

of China Computer Federation. He is a member of the IEEE.

Kang Chen received the PhD degree in com-
puter science and technology from Tsinghua
University, Beijing, China, in 2004. Currently, he
is an associate professor of computer science
and technology at Tsinghua University. His
research interests include parallel computing, dis-
tributed processing, and cloud computing.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-perfor-
mance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU-GPU hybrid
and cooperative computing, multicore comput-
ing, storage and file systems, wireless communi-
cation networks, sensor networks, peer-to-peer
file sharing systems, mobile computing, service

computing, Internet of things and cyber-physical systems. He has pub-
lished more than 350 journal articles, book chapters, and refereed con-
ference papers, and has received several best paper awards. He is
currently or has served on the editorial boards of IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, Journal of Parallel and
Distributed Computing. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SU ET AL.: SYSTEMATIC DATA PLACEMENT OPTIMIZATION IN MULTI-CLOUD STORAGE FOR COMPLEX REQUIREMENTS 1977

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

